BEHAVIOR OF EXPLORATION AND PRODUCTION COMPANIES

THE STUDY INVESTIGATES INVESTMENT BEHAVIOR OF EXPLORATION AND PRODUCTION COMPANIES IN UNITED KINGDOM CONTINENTAL SHELF

Subject Area: Education / Adult Learning / Economatric

Modified: 01st September2025

This study examines how natural gas price volatility, relative to crude oil price volatility, influences short-term investments in crude oil production by exploration and production (E&P) companies in the United Kingdom Continental Shelf (UKCS). Using statistical models like ARDL and unit root tests, the research aims to uncover investment patterns and their relationship with volatile energy prices.

Objective: (M1)

To determine if natural gas prices and its increasing volatility relative to crude oil price volatility has an effect on short term investments in crude oil production.

Prices from

£ 149

Estimated costs for: Undergraduate 2:2 • 1000 words • 7 day delivery
Delivered on-time or your money back

Rated 4.4/5

Table Of Content

Referencing Tools

S. No

Contents

Page

1

Descriptive Statistics

2

2

Unit Root Test – Augmented Dickey-Fuller (ADF) Test

3

3

Simple Autoregressive Distributed Lags (ARDL) model

6

4

Optimal lag selection

7

5

Findings for Short-Run and Long-Run Relationships

7

6

Bound test

7

Table 1: Descriptive Statistics

Variable 

Mean 

Std. Dev. 

Min 

Max 

oilinfillwill 

11.22 

7.22 

0.00 

27.00 

Oil price volatility 

19.74 

5.33 

11.09 

32.35 

Gas price volatility 

2.86 

0.58 

1.89 

4.05 

Maturity (M1) 

12.78 

3.80 

7.56 

21.27 

Rig count 

436.56 

125.95 

217.00 

719.00 

Expected oil price 

24.84 

46.71 

5.91 

290.01 

Expected nat. gas price 

0.11 

0.18 

0.05 

1.28 

lagoilinfill 

11.16 

7.26 

0.00 

27.00 

 

Table 1 provides the descriptive statistics for the variables utilized in this research. Infill oil wells have a mean of 11.22 with a standard deviation of 7.22, oil price volatility has a mean of 19.74 and SD of 5.33, while gas price volatility averages 2.86 with an SD of 0.58. Maturity has a mean of 12.78 and SD of 3.80, rig count has a mean of 436.56 and SD of 125.95. Expected oil price averages 24.84 with SD 46.71, expected natural gas price has a mean of 0.11 and SD of 0.18, and lagoilinfill has a mean of 11.16 and SD of 7.26.

 

Get Help With Your Proposal

If you need assistance with writing your proposal, our professional Dissertation Proposal Writing Service is here to help!

Table 2: Unit Root Test – Augmented Dickey-Fuller (ADF) Test

H0: Variable is non-stationary.

H1: Variable is stationary.

Variables 

 

Absolute 

value 

5% Critical 

value 

Decision 

Dependent variable 

lnoilinfillwell 

Intercept only 

-4.016 

-2.920 

Reject H0 

Trend & Intercept 

-6.204 

-3.488 

Reject H0 

No trend, No intercept 

-0.667 

-1.950 

Accept H0 

Independent variables 

lnoilpr 

Intercept only 

-2.641 

-2.916 

Accept H0 

Trend & Intercept 

-2.487 

-3.483 

Accept H0 

No trend, No intercept 

-0.386 

-1.950 

Accept H0 

lngaspr 

Intercept only 

-2.152 

-2.916 

Accept H0 

Trend & Intercept 

-2.167 

-3.483 

Accept H0 

No trend, No intercept 

-1.114 

-1.950 

Accept H0 

lnmaturity(M1) 

Intercept only 

-1.239 

-2.916 

Accept H0 

Trend & Intercept 

-2.219 

-3.483 

Accept H0 

No trend, No intercept 

0.662 

-1.950 

Accept H0 

lnmaturity(M2) 

Intercept only 

-1.810 

-2.920 

Accept H0 

Trend & Intercept 

-5.314 

-3.487 

Reject H0 

No trend, No intercept 

-1.207 

-1.950 

Accept H0 

lnrigs 

Intercept only 

0.762 

-2.916 

Accept H0 

Trend & Intercept 

-1.668 

-3.483 

Accept H0 

No trend, No intercept 

-1.132 

-1.950 

Accept H0 

lnvoloil 

Intercept only 

-5.698 

-2.916 

Reject H0 

Trend & Intercept 

-5.683 

-3.483 

Reject H0 

No trend, No intercept 

-1.680 

-1.950 

Accept H0 

lnvolgas 

Intercept only 

-8.685 

-2.916 

Reject H0 

Trend & Intercept 

-8.605 

-3.483 

Reject H0 

No trend, No intercept 

-1.427 

-1.950 

Accept H0 

Table 2 shows the result of the ADF test. The variable lnoilinfillwell shows a t-value of -4.016, which is higher than the 5% critical value of -2.920, leading to the rejection of the null hypothesis. In contrast, variables like lnoilpr, lngaspr, lnmaturity, lnrigs, lnvoloil, and lnvolgas have t-values below the critical value, indicating they are non-stationary. 

Autoregressive Distributed lag (ARDL) 

The ARDL cointegration approach, developed by Pesaran and Shin (1999), offers three main advantages over traditional methods:

  1. It allows variables to be integrated at different orders (I(0), I(1), or fractional).
  2. It is more effective with small sample sizes.
  3. It provides unbiased long-run estimates.

Key points of the ARDL model:

  • Includes lagged values of the dependent variable and both current and lagged values of regressors.
  • Uses a mix of endogenous and exogenous variables, unlike the VAR model.
  • A unit root test ensures no variables are I(2).
  • Can handle variables with different integration orders or all variables as I(1).
  • If cointegrated, both short-run (ARDL) and long-run (VECM) models are specified; if not, only the short-run model is used.
  • The ARDL (p, q) model is defined as follows: 

 

Where    is a vector and the variables in are allowed to be purely I(0) or I(1) or cointegrated; β and  are coefficients; is the constant; i=1,2,3, …k; p, q are optimal lag orders; is a vector of the error terms-unobservable zero mean white noise vector process (serially uncorrelated or independent). 

  1. The dependent variable is a function of lagged dependent variable, current and lagged value of the other explanatory variable(s) in the model. 
  1. The lag lengths for p, q may not necessarily be the same. 
  1. p lags: used for the dependent variable 
  1. q lags: utilized for the exogenous variables 

Table 3: Simple Autoregressive Distributed Lags (ARDL) model

ARDL (4,4,4,4,4) regression 

Sample: 1985q3 – 1999q4                           Number of obs = 58 

F(24, 33) = 1.82 

Prob > F = 0.0550 

R-squared = 0.5697 

Adj R-squared = 0.2567 

Log likelihood = -29.150597                       Root MSE = 0.5303 

lnoilinfillwell 

Coefficient 

SE 

t-value 

p-value 

lnoilinfillwell 

 

 

 

 

L1. 

-0.010 

0.190 

-0.050 

0.959 

L2. 

0.075 

0.209 

0.360 

0.722 

L3. 

0.070 

0.183 

0.380 

0.704 

L4. 

0.180 

0.190 

0.940 

0.352 

lngaspr 

 

 

 

 

–. 

0.774 

1.430 

0.540 

0.592 

L1. 

-1.068 

1.563 

-0.680 

0.499 

L2. 

0.206 

1.596 

0.130 

0.898 

L3. 

1.107 

1.629 

0.680 

0.502 

L4. 

-1.776 

1.244 

-1.430 

0.163 

lnoilpr 

 

 

 

 

–. 

-0.654 

0.834 

-0.780 

0.438 

L1. 

-0.098 

1.224 

-0.080 

0.937 

L2. 

0.139 

1.200 

0.120 

0.908 

L3. 

0.768 

1.121 

0.690 

0.498 

L4. 

-0.715 

0.887 

-0.810 

0.426 

lnmaturity 

 

 

 

 

–. 

0.362 

0.861 

0.420 

0.677 

L1. 

-0.570 

1.113 

-0.510 

0.612 

L2. 

1.038 

1.042 

1.000 

0.326 

L3. 

-0.164 

1.182 

-0.140 

0.891 

L4. 

0.205 

0.902 

0.230 

0.821 

lnvoloil 

 

 

 

 

–. 

0.034 

0.106 

0.320 

0.751 

L1. 

0.006 

0.106 

0.060 

0.954 

L2. 

-0.077 

0.108 

-0.710 

0.482 

L3. 

0.030 

0.110 

0.270 

0.786 

L4. 

0.078 

0.108 

0.720 

0.476 

_cons 

1.712 

2.456 

0.700 

0.491 

Table 3 depicts the basic ARDL model, with lnoilinfillwell as the dependent variable and lngaspr, lnoilpr, lnmaturity, and lnvoloil as the independent variables. The maximum lag length is set to 4, as the p-values for all independent variables from lags 1 to 4 are greater than 0.05.  

Table 4: Optimal lag selection

The maximum number of lags for the optimal lag selection is 12-36 lags for monthly data, 4-12 lags for quarterly data and 3-5 lags for yearly data.  

Selection-order criteria 

Sample:  1985q3 – 1999q4                     Number of obs = 58 

Lag 

LL 

LR 

df 

p-value 

FPE 

AIC 

HQIC 

SBIC 

-90.5713 

 

 

 

1.9E-05 

3.29556 

3.36475 

3.47319 

44.8007 

270.74 

25 

0.000 

4.10E-07 

-0.5104 

-.095238* 

.555379* 

65.7087 

41.816 

25 

0.019 

4.90E-07 

-0.3693 

0.39181 

1.5846 

93.3125 

55.208 

25 

0.000 

4.70E-07 

-0.4591 

0.64796 

2.38294 

126.391 

66.157* 

25 

0.000 

3.9e-07* 

-.737627* 

0.71533 

2.99249 

Endogenous:  lnoilinfillwell lngaspr lnoilpr lnmaturity lnvoloil 

Exogenous:  _cons 

Table 5: Findings for Short-Run and Long-Run Relationships

ARDL(1,0,0,0,0) regression 

Sample: 1985q3 – 1999q4                           Number of obs = 58 

R-squared       =     0.3674 

Adj R-squared   =     0.3066 

Log likelihood = -39.083809                       Root MSE = 0.5013 

D. 

 

 

 

 

lnoilinfillwell 

Coefficient 

SE 

t-value 

p-value 

ADJ 

 

 

 

 

lnoilinfillwell 

 

 

 

 

L1. 

-0.74 

0.14 

-5.37 

0.00 

LR 

 

 

 

 

lngaspr 

-1.02 

0.60 

-1.69 

0.10 

lnoilpr 

-0.06 

0.48 

-0.12 

0.91 

lnmaturity 

0.96 

0.32 

3.04 

0.00 

lnvoloil 

0.03 

0.10 

0.27 

0.79 

SR 

 

 

 

 

_cons 

0.79 

1.28 

0.62 

0.54 

Bolded value represents significant 

Table 5 shows the relationships between the variables in both the short-term and long-term contexts. A long-run relationship exists between lnoilinfillwell and maturity (p-value = 0.00 < 0.05). Additionally, a short-run relationship is observed for lag 1 of lnoilinfillwell on lnoilinfillwell (p-value = 0.00 < 0.05).

Decision criteria for bound test 

  1. If the F-statistic for the constructed bounds is greater than the upper bound I(1), there is cointegration (long-run relationship), reject null hypothesis.
  2. If the F-statistic is lower than the lower bound I(0), there is no cointegration; do not reject the null hypothesis and estimate the short-run ARDL model.
  3. A test result will not be definitive if the F-statistic is between the I(0) and I(1) bounds.

Table 6: Bound test

ARDL(1,0,0,0,0) regression 

Sample: 1985q3 – 1999q4                           Number of obs   =         58 

R-squared       =     0.3674 

Adj R-squared   =     0.3066 

Log likelihood = -39.083809                       Root MSE        =     0.5013 

H0: no levels relationship             F =  6.041 

      t = -5.375 

 

Critical Values (0.1-0.01), F-statistic, Case 3 

 

[I_0] 

[I_1] 

[I_0] 

[I_1] 

[I_0] 

[I_1] 

[I_0] 

[I_1] 

 

L_1 

L_1 

L_05 

L_05 

L_025 

L_025 

L_01 

L_01 

k_4 

2.45 

3.52 

2.86 

4.01 

3.25 

4.49 

3.74 

5.06 

Accept the null hypothesis if the F-statistic is below the I(0) critical value in respect to regressors.

The null hypothesis should be rejected if the F-statistic is higher than the I(1) critical value for the regressors.

Because the calculated F-statistic is 6.041 which is greater than the upper bound critical value for I(1) then we conclude that cointegration exists, meaning there is a long run relationship. That is there is a long-run relationship. Hence we reject the null hypothesis. 

Critical Values (0.1-0.01), t-statistic, Case 3 

 

[I_0] 

[I_1] 

[I_0] 

[I_1] 

[I_0] 

[I_1] 

[I_0] 

[I_1] 

 

L_1 

L_1 

L_05 

L_05 

L_025 

L_025 

L_01 

L_01 

k_4 

-2.57 

-3.66 

-2.86 

-3.99 

-3.13 

-4.26 

-3.43 

-4.60 

Accept the null if the value of the t is greater than the critical value of I(0) regressors. Reject the null if the value of the t is greater than the critical value of I(1) regressors.

Since the calculated t-statistic is -5.341 which is greater than the critical value for the upper bound I(1), then we can conclude that there is cointegration.

Conclusion:

The results indicate that there is a long run relationship between the crude oil production investments and price volatility. Oil price volatility has a more immediate impact, while the bound test confirms a long-term equilibrium between key variables. These insights can help E&P companies and policymakers better navigate market fluctuations and make informed investment decisions.

This will close in 0 seconds